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1 Definition of Hyperbolicity

1.1 Working definition of hyperbolicity

Let’s return to our general discussion of hyperbolicity. We initially gave a working definition
of hyperbolicity:

• Order of t derivatives = order of x-derivatives

• (Local) well-posedness of the initial value problem.

The purpose of the first condition is to ensure that we have a finite speed of prop-
agation. This is as opposed to some other equations, where you may have compactly
supported initial data, but immediately after t = 0, the solution is no longer compactly
supported. The finite speed of propagation is very related to Lorentzian geometry.

We would also like to have an algebraic definition of hyperbolicity. Here, we will give the
standard definition you may see in a paper or textbook. We gave the working definition
first because there are some hyperbolic PDEs which are badly behaved (e.g. you can’t
prove local well-posedness of the initial value problem without extra assumptions). In
what follows, compare with the PDE Pφ = f , where

Pφ = −∂2
t φ+ ∂j(a

k,j∂kφ) + bj∂jφ+ cφ.

This is a special case of hyperbolicity for second order linear PDEs.

1.2 Hyperbolicity for first-order systems

The solution we want will take the form of Φ : Rt × Rd → Rn, with the equation

∂tΦ
J + (Bj)JK∂jΦ

K .

We can express this in matrix notation as

∂tΦ +Bj∂jΦ = F.
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Here, Bj = (Bj)JK is an n× n matrix valued function on Rt × Rd, and F : Rt × Rd → Rn.
The initial condition is Φ|t=0 = Φ0.

Definition 1.1. Let the symbol of Bj∂j be σ(t, x; ξ) = ξjB
j(t, x), where ξ ∈ Rd. We say

that a first-order equation is hyperbolic if σ(t, x; ξ) has n real eigenvalues for each t, x, ξ.

Theorem 1.1 (Constant coefficient case). Assume Bj is independent of (t, x). Then
hyperbolicity implies local well-posedness of the initial value problem.

Proof. The proof involves Fourier analysis, and you can find it in section 7.3 of Evans’
textbook.

If Bj is constant and σ has a non-real eigenvalue, then there exists a plane wave
solution

Φ = Aei(x·ξ+tω),

where Imω 6= 0. If Imω < 0, this solution experiences exponential growth in time. This
can be formalized into an ill-posedness statement. This should motivate our definition of
hyperbolicity.

However, in the variable coefficient case, we need stronger conditions to ensure local
well-posedness.

Definition 1.2. A first-order equation is symmetric hyperbolic if each Bj(t, x) is sym-
metric for all t, x. If there exists a similarity transformation P (t, x) sending Φ 7→ Φ̃ = PΦ
such that the transformed equation is symmetric hyperbolic, then the equation is called
symmetrizable hyperbolic.

Theorem 1.2. A symmetric hyperbolic first-order equation (with regularity assumptions
on B) has local well-posedness of the initial value problem.

Proof. This proof is by the energy method. You can find a proof in 7.3 in Evans’ textbook,
but the method we have presented in class is closer to the presentation in Chapter 7 of
Ringström’s book.

Definition 1.3. A hyperbolic first-order system is said to be strictly hyperbolic if all
n real eigenvalues are distinct (for all t, x, ξ)

λ1(t, x; ξ) < · · · < λn(t, x, ; ξ).

This is a useful definition when the spatial dimension is d = 1. In this case, these
eigenvalue separation conditions help us use the method of characteristics to solve this
system (normally you can only solve scalar equations in this way). This is not discussed
in Evans’ book, but it is discussed in Hyperbolic Conservation Laws by Dafemos.
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1.3 Hyperbolicity for second-order, linear, scalar PDEs

Here, we give a notion of hyperbolicity that generalizes our wave equation �φ = 0. We
have

Pφ = ∂µ(gµ,ν∂νφ) + bµ∂µφ+ cφ.

Let’s focus on gµ,ν , the important part. This brings us to the idea of Lorentzian (inverse)
metrics.

Let (g−1)µ,ν(t, x) be a symmetric (1+d)×(1+d) matrix with signature (−,+,+, . . . ,+).
(Compare this to if the case where M = diag(−1, 1, 1, . . . , 1), so the wave equation can be
written as ∂µ(mµ,ν∂νφ) = 0.) Let g = gµ,ν .

Definition 1.4. A Lorentzian manifold is a pair (M, g), whereM is a (1+d)-dimensional
smooth manifold, and g is a symmetric, covariant 2-tensor with signature (−,+,+, . . . ,+).

The key difference from Riemannian geometry is due to the following.

Lemma 1.1. Let Q(ξ) be a quadratic form qα,βξαξβ. If q has no zero eigenvalue and has
at least one negative and positive eigenvalues, then {ξ : Q(ξ) = 0} determines q up to
multiplication by a constant.

The condition gα,βξαξβ = 0 determines gα,β (up to a constant). This explains why
Lorentzian geometry is a natural setting for Einstein’s equations. If we have gα,βv

αvβ = 0,
the the zero set of P looks like a cone. This lemma tells you that these distinguished
directions determine the behavior. In relativity, there are distinguished speeds, such as the
speed of light. The tangent space at each point is made of velocity vectors. One way to
think of this is that at each point, you get a cone, but you need some way to stitch these
together; the Lorentzian metric is a natural way to do this.

Here is an algebraic lemma which connects the restricted class of PDEs that we have
considered to this Lorentzian setting.

Lemma 1.2. Let g be a Lorentzian metric, and let p ∈ M. There exists a neighborhood
U 3 p and local coordinates (xo, . . . , xd) in U such that (g−1)0,j = 0 for all j = 1, . . . , d
and (g−1)0,0 < −c for some c > 0. We may also ensure that (g−1)j,kξjξk ≥ c0|ξ|2 for some
c0 > 0.

Corollary 1.1. Locally,

Pφ = ∂µ(gµ,ν∂νφ) + bµ∂µφ+ cφ

can be put in the restricted form discussed earlier (g0,j = 0, g0,0 = −1, and gj,kξjξk ≥
λ|ξ|2). The condition g0,0 = −1 can be ensured by normalization at the level of the PDE.

Proof. Take x0 such that (g−1)µ,ν(dx0)µ(dx0)ν < 0; we say that such a dx0 is time-like.
We are looking for hypersurfaces that are transversal to the zero cones at each point. Take
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any local coordinates xj near p in {x0 = 0}. We want to transport xj to other level surfaces
of x0 so that (g−1)0,j = 0. Here is the procedure. Take a 1-form (dx0)µ and form a vector
field (g−1)µ,ν(dx0)ν = ∇x0. If we write this in coordinates, this vector field is (g−1)µ,ν .

We want to make sure that (g−1)0,µ∂µx
j = 0. So we construct this vector field ∇x0

and then flow along the vector field.

1.4 Geometric formulation of local well-posedness of the initial value
problem

Here is the geometric idea concerning the initial time we start our initial conditions at.
Just as in Riemannian geometry, we can create a Levi-Civita connection, which leads to
parallel transport.

Definition 1.5. A C1 curve γ is a geodesic if ∇γ̇ γ̇ = 0.

For a geodesic γ, d
dtg(γ̇, γ̇) = 0. The curve γ is called

timelike if g(γ̇, γ̇) < 0

null if g(γ̇, γ̇) < 0

spacelike if g(γ̇, γ̇) > 0.

Corollary 1.2. If γ is a geodesic, there is a well-defined causal (i.e. timelike or null)
character.

Definition 1.6. A Lorentzian manifold (M, g) is time-orientable if there exists a non-
vanishing vector field that is timelike everywhere.

Definition 1.7. Let M be a Lorentzian manifold, and let V ⊆ M. The causal future
of V is J +(V ) = {all q ∈M with a future causal curve from p ∈ V to q}. We also let
D+(V ) = {q : J−(q) : all causal past-pointing curves from q meet V }.

Here, future means the top half of the cone.
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Definition 1.8. A Cauchy hypersurface is a spacelike hypersurface; i.e. a hyper surface
with all tangent vectors spacelike

In this picture,
M = D+(Σ) ∪ Σ ∪ D−(Σ).

Definition 1.9. Global hyperbolicity is when (M, g) is time orientable and there exists
a Cauchy hypersurface.

Theorem 1.3. Let (M, g) be globally hyperbolic with a Cauchy hypersurface Σ. Then{
�gφ+Bφ+ cφ = f

(φ, nΣφ)|Σ = (g, h)

is well-posed (existence and uniqueness). here. B is a vector field, c is a function, nΣ is
the unit normal to Σ, and

�gφ = divg(dφ) =
1√
|d+ g|

∂µ((g−1)µ,ν
√
|d+ g|∂νφ).

The converse is also true.

What is interesting is there is a purely geometric formulation of this. A good reference
for this story is Chapters 10 to 12 of Ringström’s book.
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